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A self-consistent study of the slow resistive evolution of an axisymmetric toroidal plasma 
gives rise to a set of transport equations involving one space variable which require input from 
the solution of a generalized differential equation obtained from the time-differentiated 
Grad-Shafranov equation. An iterative scheme is presented for the numerical solution of this 
generalized differential equation which overcomes the problems of the non-standard boundary 
conditions. As an illustration this method is used to compute the instantaneous diffusion 
velocity of a class of model toroidal equilibria. A more detailed study is presented of the time 
evolution of this model in the cylindrical limit in order to illustrate techniques which can be 
used in a more complete toroidal simulation. 

I. INTRODUCTION 

The problem of the numerical description of slow resistive plasma diffusion 
through a sequence of quasi-equilibria has been discussed in a variety of ways. It was 
pointed out by Grad and Hogan [ 1 ] that classical plasma diffusion is a more 
complex process than had previously been treated [2-71. In toroidal axisymmetric 
systems, a realistic description must include coupling among resistive diffusion, 
convection and changes in the field geometry. The resulting diffusion is a non-local 
process which depends on the solution of a global boundary value problem. 

A number of formulations of this classical diffusion problem have appeared since. 
An approach, developed by Grad et al. [g-10] based on the solution of the Grad- 
Shafranov equation to determine the poloidal flux, alternating with a set of one 
dimensional transport equations to determine the profiles, has concentrated on 
attempts to simulate magnetic topology changes. Similar models using time 
dependent flux coordinate systems have been developed and applied to tokamak and 
field reversed configurations [ 11-13 ]. 
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A theoretical basis for a completely self-consistent approach with the constraint 
that the system must be at all times in a magnetohydrodynamic (MHD) pressure 
balance situation, has been given by a variety of authors ] 14-201. Each of these 
recognized that the time differential of the Grad-Shafranov equation leads to a 
generalized integro-differential equation from which can be determined the instan- 
taneous diffusion velocity which is required in order for the system to diffuse through 
a sequence of quasi-equilibria. This approach was implemented numerically by Jardin 
[ 2 ] by using a combination of flux-based coordinates and Fourier techniques, which, 
however, may lead to significant difficulties in simulating magnetic topology changes. 

The purpose of this paper is two-fold. Firstly, to give a new iterative technique for 
the solution of the two dimensional generalized differential equation that arises from 
the time-differentiated Grad-Shafranov equation. Secondly, we wish to illustrate a 
technique for the numerical solution of the time dependent problem by giving detailed 
consideration to a cylindrical model. We show that the two dimensional generalized 
differential equation reduces to an ordinary differential equation in the cylindrical 
limit. In the toroidal problem the boundary conditions are non-standard but in the 
limiting case we find standard two-point boundary conditions. The structure of this 
ordinary differential equation was a valuable guide to the development of the 
algorithm for the solution of the full generalized differential equation. 

The basic equations are set out in Section II and in Section III the two dimensional 
generalized differential equation is derived, along with the one dimensional equations 
which describe the time development of the pressure and toroidal field. Section IV 
describes an iterative procedure for the solution of the generalized differential 
equation. This is illustrated with some reults for a toroidal plasma model. The cylin- 
drical limit is discussed in Sections-V and VI. The numerical problem consists of live 
basic steps: 

(i) solve the Grad-Shafranov equation to obtain an initial equilibrium, 

(ii) solve the ordinary differential equation for xE,, 

(iii) solve the plasma evolution equations, 

(iv) iterate steps (ii) and (iii) using a predictor-corrector scheme, and 

(VI correct numerical drift if necessary using the Grad-Shafranov equation. 

A simple model was chosen so that the numerical problems can be isolated and 
solved. Results are given in Section VII. The transport on this time scale is through a 
series of quasi-equilibria. Thus, whether or not the solution satisfies the 
Grad-Shafranov equation at each time step acts as a prime check of the validity of 
the scheme and this condition can be used to prevent any numerical drift. It is shown 
that, even with the simple model used, considerable numerical problems can arise but 
that these can be resolved by reasonable and appropriate techniques. 

The stationary and quasi-stationary limits of this theory can be related to the 
models of Kruskal and Kulsrud [2] and Pfirsch and Schliiter [ 71. This relation is 
detailed in the Appendix. 
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II. BASIC EQUATIONS 

For the purposes of this study we have chosen the magnetohydrodynamic (MHD) 
equations used by Grad and Hogan [ 11, generalized to anisotropic resistivity and an 
adiabatic plasma (y = C,/C,.). If we define the magnetic field and current by ] 22 ]. 

B=B,+B,= 
V#xVY 

271 + 4, gV0, 

. * A*Y 
j=&+J,=-Ro(V$XVg)+ 2n ~ V@, 

these equations may be written (in appropriate units) 

$=-v. (pv>-((y- 1) pv lVP12 
. ” - Ir,,j’ + et,, - rll) yp- 1 

3 

z=x2v. ~~-~)+‘I,,A*g+(,,-‘1_)X*V. ($$), 

271~E~+~.VY=r,,A*y+(~,/-rl) 
v!P* vp 

B2 3 

where (x, 4, z) represents a cylindrical coordinate system (Fig. 1): 

(2) 

(4) 

FIG. 1. Magnetic surface geometry and coordinate system. 
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and where vi, and rL are the parallel and perpendicular components to the resistivity 
tensor. S(!P) is the unit step function, 

S(Y) = 1 in the plasma 

=o in the vacuum. 

Equation (6) is the toroidal component of Ohm’s law: 

E+vXB=g-j. (8) 

These equations are to be solved subject to the constraint that the plasma satisfies the 
pressure balance equation 

Vp=jXB (9) 

at all times. This implies that p = p(Y, t) and g = g( !K t) along with the Grad- 
Shafranov equation 

A*Y+(27r)2s(Y) ! aP ag x2z+R:g;iyl =o. 
i 

(10) 

III. THE GENERAL MODEL 

1. Toroidal Electric Field and Boundary Conditions 

With appropriate initial and boundary conditions, Eqs. (3) (4) (5), (6) and (10) 
are enough to describe the slow resistive evolution of an axisymmetric toroidal 
plasma. However, they do not represent the most useful form for numerical com- 
putation. 

Differentiation of (10) with respect to time (Eq. (10) holds for all times), and 
substitution of (5) and (6) to eliminate v + VY and a!P/&, yields after some 
rearrangement, an equation for xE, : 

2 

A *(xE,) + (27~)~S( Y’) x2$+R;& 

(11) 
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where the notation (a/&)1,+, means a/at - (aY/at)(a/aY), and where Ys is the value of 
Y at the plasma surface. 

It is convenient at this point to pause and consider the boundary conditions to be 
applied to Eq. (11). We assume that the plasma and vacuum are surrounded by a 
conducting casing which prevents magnetic flux from escaping. The wall is then a 
surface of constant flux Yy,. and 

(12) 

Furthermore, it is necessary to insist that as the system evolves the plasma-vacuum 
interface remains a constant flux surface. Using Eqs. (5) and (6), 

~=g+“*VY=‘IIA*Y-c(t)+(‘l,,-rlJ 
VY.Vp 

B2 . 

In particular, by definition of Ys and using Eq. (10) 

x - co> + (III, - VI) (14) 

describes the evolution of the poloidal flux at the plasma-vacuum boundary. Since 
dYJdt can depend explicitly only on Y and t, it is therefore necessary to insist that, 

The choice 

(16) 

is made to avoid the delta function singularity in Eq. (11). Then Eq. (14) reduces to 

dY 
s = -c(t), 

dt (17) 

i.e., 

dY 
---L = -27r(xE,),,. + d(t). 

dt (18) 

The function d(t) appearing in Eqs. (12) and (18) therefore serves only to redefine the 
arbitrary constant implicit in the definition of Y, so it can conveniently be taken as 
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zero. The constant c(t), however, is physically significant, representing the flux 
change in the core of the Tokamak transformer, i.e., 

(XE,), = c(t)/27r. (19) 

On final condition is obtained by taking Eq. (6) at the magnetic axis, 

Thus Eq. (11) has boundary conditions applied not only at the edge of the region but 
also, in a non-standard fashion for ordinary elliptic partial differential equtions, at the 
magnetic axis. 

2. Surface Averaged Transport Equations 

Defining an average over a flux surface 

where 

we can average Eqs. (3) and (4) over flux surfaces to obtain a pair of 1D transport 
equations. Using Eqs. (5) and (6), after some straightforward algebra (201, one 
obtains 

=~~(Y,((xE,J-rl,,(d*P))l--rl(d*y)~ P 

-(a,,-rl+--~ V,PP, l a [ (!I%)] 

+(Y- 1) j~~lV~((xE,)-ri,,(d*r))l+q,,(j’)i 

-(Y-NV,,-rJ I~~[V~p~(~)]+(~~*(~)i (23) 
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and similarly, 

415 

& ag ag 
( 

ag 
at y- c(Qay/= z-27rxE,w 

) 

= v-,(1/~*) av g “[h (($+l,(!g)] 

VYI*~X*) 8% 
+ ‘111 (l/x2) ZF’ 

(24) 

Substitution of Eqs. (23) and (24) into Eq. (11) provides the desired elliptic integro- 
differential equation for xE, in terms of the instantaneous equilibrium quantities. 
Taking y = 1 and qI = q,, for convenience in writing the result: 

2 

d”(xE,) + (27r)*s(Y) x2%+&$ xE, 

+ 2nS(Y? x2 -& I+ & [ V,((xE,) - q(d *Y))] YJ 

+zas(Y)R;~ g2 
1 a [b ((+)-v,,(y))] aul v-&h?) alu 

4 v W/X*) a*g + 3 (1/x2) ay* =Oy I 
(25) 

where the delta function was eliminated in view of Eqs. (15) and (16). 
Variations of this equation have been obtained previously [ 14-211. Boundary 

conditions to Eq. (25) are provided by Eqs. (20) and (19) at the magnetic axis and on 
the conducting wall respectively. Note that the condition at the axis is quite natural 
since Eq. (25) is a generalized differential equation rather than a partial differential 
equation 18-101. 

Equations (23) and (24), in addition to being used in Eq. (25), may also be used to 
determine the evolution of the two equilibrium profiles p(Y) and g(Y). However, 
from a numerical point of view, it is better to rewrite them in “conservative” form 
(when y= 1). Thus: 

+ (r,, - rlJ Ye (y) ($)‘I> (26) 



416 TURNBULLAND STORER 

where vrS Vly = v . VI+Y + &,u/lBt. vf is the fluid velocity with respect to the w flux grid. 
In particular, for y= 1, pVd and (I/x*)V,g correspond to the adiabatic variables 
used by Grad and Hu 191. 

The flux coordinate I,U is chosen here with as simple a form as possible, namely, 

y- uh@) w = Y&t) - ‘u,(t)’ (28) 

so that v/ lies in a fixed range (0 < w < 1). 

3. Statement of the Problem 

The full problem may now be stated explicitly. An initial equilibrium is set up 
using Eq. (10) with chosen profiles p(w) and g(v). Then the two dimensional 
generalized differential equation (25), with its boundary conditions equations (19) 
and (20), is used to compute the toroidal electric field function xE, with p, g and !Y 
given. Equation (5) propagates the poloidal flux !Y forward in time and the one 
dimensional transport equations (26) and (27) change the profiles p(F) and g(Y) 
(using the boundary conditions, Eqs. (15) and (16)). Equation (10) is utilized 
explicitly only to compute the initial equilibrium. The toroidal component of Ohm’s 
law, Eq. (6), may be used at any time step if the outward diffusion velocity is desired. 
Note that the two rotational components of v cannot be completely calculated in this 
model, as has been pointed out by Pao [ 141. A simple way to see this is to note that 
the basic equations (3)-(6) are invariant under the transformation 

v + v + f( Y, t)B, (29) 

where f( U: t) is an arbitrary surface function. 
The relation of this model to Pfirsch-Schliiter diffusion is detailed in the Appendix. 

IV. NUMERICAL ALGORITHM FOR SOLUTION 
OF THE GENERALIZED DIFFERENTIAL EQUATION 

The surface averages and their flux derivatives in Eq. (25) would provide a rather 
complicated, non-sparse set of finite difference equations. A method based on a 
transformation to a full flux-based coordinate system has been given by Jardin [ 2 11. 
We present here an alternative iterative technique which is based on the standard 
cylindrical coordinates. 
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Writing @ for xE, and taking the isothermal case for notational convenience, 
Eq. (25) may be written in the general form, 

L@ = f(Q), (30) 

with L an elliptic differential operator and f a linear self-adjoint functional of @. The 
presence of a boundary condition (see Eq. (20)) at an interior point presents a special 
problem. An iteration procedure has been developed, however, which incorporates 
this condition as well as the condition at a conducting wall (or at the edge of the 
computation region). 

Firstly, consider the iteration procedure: 

L@'+"* =L@'+K,(x,z)[LW-f(W)], (31) 

where K, is a function to be chosen. The operator L is inverted numerically so as to 
include the boundary condition at the wall: 

rt I/2 _ @)(, -c. (32) 

To incorporate the condition at the interior point, along with each step of Eqs. (31) 
and (32), the following equation is also solved for 0(x, z): 

LO'+"2=LO' +K,(x,z)[L@'--f(W)], (33) 

with L inverted using the boundary condition 

@‘+ 112 = 0. 
I( (34) 

Then Qr+“’ is corrected by taking 

@ r+l_ _ @jr+‘/* + &yt 112, (35) 

where a is chosen so that the condition on @ at the interior point is satisfied. The 
value of Qr+’ at the wall is automatically kept at c. 

The functions K, and K, are chosen so as to allow the iteration procedure, in 
Eqs. (3 l)-(35), to converge. If it does converge, then it will converge to a solution of 
Eq. (30) with the correct boundary conditions, both at the wall and at the interior 
point. K, must be chosen so that for each application of Eq. (31), one is actually 
solving an equation for which only a single specific boundary condition on the wall is 
appropriate. Furthermore, K, should be chosen so that the operator L, rather than the 
right side of Eq. (31), has the dominant second derivatives. The functions K, and K, 
must be chosen so that they are linearly independent in the vicinity of the magnetic 
axis otherwise the two iteration equations (31) and (33) would be redundant. An 
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analysis of the cylindrical limit (see Section V) guided our choice of K, and K,. 
Functions which have proved satisfactory for all cases tried are 

where 

Ibl 

Stole: 

-1 0.08 Ins- 

ks2 
K,=- 

1 +s2’ 

K,=--S-, 
l+s 

6 - xd2 
s2= (x,.-xJ2 + 

(z - zd2 
(z,,. - zo>’ ’ 

lo1 

SCOl.2: 

- 

0.06 ms-’ 

(Cl 

Scale: 

O.lGs~ 

(36) 

(37) 

(38) 

FIG. 2. Flux contours and velocity flow pattern as a function of c for an equilibrium with 
B,=3.5T, pO=O.l x 106N/m’, g,= 1.0, R, = 1.6 m, Y, = -0.2 Wb, I, = 1.6 MA and VII= ql = 
12.6 x 10 -’ ohm m. A conducting shall of rectangular cross section (1.4 x 1.4 m) surrounds the plasma. 
The distance from the symmetry axis to the inner wall is 0.7 m. The flux contours are at equal intervals 
from -0.8771 to -0.2 Wb at the plasma surface (broken contour). One vacuum contour (dotted) at 
-0.1 Wb is also shown. 
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with (x0, zJ the position of the magnetic axis and (x,, z,.) an arbitrary point on the 
wall. The denominators in Eqs. (36) and (37) reduce the growth of K, and K, in 
regions away from the interior point, thereby forcing K, and K, to behave like 
normal successive-over-relaxation constants in those regions. The single constant k is 
chosen to achieve and optimize convergence. On the Flinders University DEC.10 
each iteration took approximately 30 sec. 

A series of results is presented in Fig. 2 showing u = (v . V yI)/]VYl plotted as 
scaled arrows, superimposed on the flux surfaces for various values of the constant c. 
In each of these runs, the equilibrium was computed by the Princeton PEST code 
[22] (modified to incorporate a conducting wall boundary). The elliptic operator d * 
was inverted using double cyclic reduction [23]. The function xE, was computed 
from the algorithm described in the previous section and v from Eq. (6). One 
significant conclusion may be noted from these results. The outward velocity v can 
roughly be considered to be a combination of two separate contributions, 

v-v,+v,, (39) 

where v, depends on p and v2 varies with cos 0 (taking 0 as a poloidal angle). v, 
increases with 1 c] whereas v2 is relatively insensitive to c. This is reminiscent of the 
quasi-stationary Plirsch-Schliiter results given in the Appendix. 

Thus this technique could be used to give the instantaneous diffusion velocity of a 
given MHD equilibrium. The problem of coupling this to give the full time evolution 
of the equilibrium is illustrated in the remainder of the paper by consideration of a 
cylindrical model. 

V. THE CYLINDRICAL LIMIT 

In the cylindrical (very large aspect ratio) limit it is convenient to use a set of 
coordinates (r, 8) defined by 

x=x,+rcos& 

z = r sin 8, 
(40) 

(41) 

where r is the distance from the magnetic axis position x0. In this limit, the flux 
surfaces are concentric circles, all quantities are independent of 0, and (f(x)) may be 
replaced by f(x,). The geometry is that of a straight cylinder of length 271x,, with 
periodic boundary conditions. It should be noted here that with this geometry, 
Pfirsch-Schltiter diffusion [ 7] is absent. However, the Pfirsch-Schliiter limit is the 
quasi-stationary limiting case which is fully treated in the Appendix. In the cylin- 
drical limit 

A*=$++$, (42) 
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and the Grad-Shafranov equation becomes 

(43) 

The factor x0 is retained in order to make the transition from toroidal geometry more 
transparent. We take 

(44) 

as initial profiles required in the numerical solution of Eq. (10) (normally with R,, 
such that g, = 1). Here, subscripts m, s and w will be used to refer to the magnetic 
axis, plasma surface and conducting wall (or edge of the computational region), 
respectively. 

It is convenient to replace the independent variable r by 

s = $2, (46) 

so that in using 

i 
dS (2n)‘rx, 2(27q2xo 

‘,= (vy/(= jdY/dr( =(dyl/d,l 

in the expressions for (ap/at&, and (3g/at)lv, one need not be concerned with r and 
d!F/dr vanishing at the magnetic axis. Then in the cylindrical limit, these expressions 
become 

(49) 

In order to illustrate the numerical techniques used we have chosen to study the 
isothermal case (y = 1) with isotropic resistivity q = vi1 = qL. The generalization to 
the adiabatic case or anisotropic resistivity poses no difficulty ]20]. 
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The notation may be simplified considerably by defining 

F = (27c)‘(x;p + iI?; g’), (50) 

G= (2x)2(x;p+R:g2), 

f = (2Tc) 
i 
x:A*+R;,vY12g-$ 

1 
, (51) 

so that the Grad-Shafranov equation (43) can be written 

A*Y/+F,=O, (52) 

and, with Eqs. (48) and (49), Eq. (11) becomes 

Some further notation is also useful. Set, 

k = 0, 1, 2, 3 ,...I (54) 

and similarly for G,. Also, 

Q, =f(l +F,); Q>=$ +2Q,F,h 
(55) 

Po=F,+Q,F,; P,=F,+Q,F,. 

Note that Q, = -(a’ul/Lk’)/(~YY/Bs). 
In order to write Eq. (53) as an ordinary differential equation, we transform the Y 

derivatives of xoE, to derivatives with respect to s. It is numerically advantageous, 
however, to retain the derivatives of p and g as derivatives with respect to Y. Using 
Eqs. (54) and (55) then Eq. (53) becomes a linear second order ordinary differential 
equation, 

(56) 
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where, 
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A=s+G,, 

= s, 

B= 1 +G, +2G,Q,, 

= 1, 

C=Fz+G,Q,+G,Q,, 

= 0, 

s<s,, 
(58) 

s > s,, 

SGS,, 
(59) 

s > s,, 

b&q $ (G,P,+G,P,+G,F,Q,} 
( 1 

+rlr,-$d(s-s,)F,/2n, S<S,, (60) 

= 0, s > s,, 

are regular coefficients, though discontinuous across the plasma vacuum boundary 
(at s = s,). Note that P, requires derivatives with respect to Y of third order. 

The non-standard boundary conditions equations (19) and (20) of the original 
generalized differential equation now reduce to the two point conditions 

xoE,tO) = hE,Ln = -W,), (61) 

at the magnetic axis and, 

XoE&..) = t%E,),. = c(t) (62) 

at the wall. Across the plasma vacuum interface, both xoE, and (d/ds)(x,E,) remain 
continuous. Note particularly that the driving field term, c(t), appears only as a 
boundary value for x,,E, at the wall. In the vacuum region the solution of Eq. (53) 
implies 

This result is useful numerically for extrapolating a numerical solution of xoE, 
known only at grid points, back to s,. 

Before proceeding with the remainder of the model, it is instructive to pause and 
compare the present one dimensional model with the algorithm developed in 
Section IV to solve the toriodal generalized differential equation for xE,. In that 
section it was noted that a function K,(x, z) had to be chosen so that in inverting 
Eq. (3 1) one is actually solving an equation (i) for which a single boundary condition 
at the conducting wall is appropriate and (ii) so that d* rather than the right side of 
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Eq. (3 1) has the dominant second derivatives everywhere. Near the magnetic axis, the 
toroidal generalized differential equation (25) will look like its cyclindrical coun- 
terpart, Eq. (56). The operator A* will be s(d2/dsz) + d/ds and the third term in 
Eq. (53) will have second derivatives which vary like G,(d*/ds*). Therefore K, must 
be chosen so that K, G, falls off faster than s near the magnetic axis. But 

G,-(27~)’ (g)-* (x:p+R;g’) 

remains finite near the axis, to the simplest choice that satisfies both of the necessary 
conditions is K, - s2 near the magnetic axis. 

In the cylindrical limit, the plasma evolution equations ((26) (27)) become 

: [ (~)j’iJ],=-$ [ (g)-‘v.c “WP] 
and 

; [(?$g],=-$ [($)-Iv,. Vyg-+$I, (66) 

where 

Y- Y, 
w= !P-Y,’ 

and 

The poloidal flux Y is advanced using 

g = x0 E, - c(t), 

and the boundary conditions on p(v) and g(w) are 

($),= ($),=o. 

(67) 

(68) 

(69) 

(70) 

The Neumann boundary condition on the pressure is chosen by analogy with the 
toroidal case (see Eq. (15)) where it is required so that the plasma-vacuum boundary 
will remain a flux surface at all times. The natural starting boundary value, p = 0, 
remains unchanged when the derivative of p is also zero on the boundary at all times. 
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However, we have chosen (L?g/aw), to be zero as a matter of convenience since this 
allows us to avoid complications that arise from having surface currents (such as the 
delta function that would be introduced in Eq. (53)). The value of g, is allowed to 
vary. If a conducting wall is present the model is consistent if we assume that 
currents are induced in the wall accordingly. If the vacuum toroidal field is held 
constant, however, the delta function in Eq. (53) must be included and one must be 
aware of the restrictions imposed by conservation of toroidal flux within the vessel. 

The values of Y at the magnetic axis and at the plasma surface, Y, and Y,, may 
be determined from 

dY m = (XuEJm - c(t) dt 

and 

dY 
2 = -c(t). 

dt 

(71) 

Finally, the radial velocity component v = (v . VY)/( VYyI can be found from Ohm’s 
law, 

v. VYfx,E,=~A”Y, (73) 

as in the general toroidal case. Note that v(O) is zero in the cylindrical limit since 
otherwise poloidal symmetry would be destroyed. Also, at the plasma surface, 

where xoE,(s,) is known accurately from Eq. (63). 

VI. NUMERICAL SOLUTION OF THE DIFFUSION EQUATIONS 

1. Equation for the Electric Field 

The Grad-Shafranov equation (Eq. (52)) is numerically solved using a simple one 
dimensional version of the PEST equilibrium solver. Equation (56) is solved as a 
standard linear ordinary differential equation by inverting the appropriate tridiagonal 
matrix, using cyclic reduction [24]. However, some care must be taken in computing 
the coefficients in Eqs. (57)-(60) at and near the magnetic axis and across the 
moving plasma boundary. Near the axis, both Q,(S) and Q*(s) involve limiting forms, 
though both have finite values. A Taylor series expansion has been found to be most 
accurate in this region, 

(75) 
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where the derivatives of Qk are easily expressed in terms of the F, 1201. In Eqs. 
(57)-(60) the coefficients must be smoothed in order to prevent discontinuous time 
evolution of the solution as the plasma surface crosses a grid point. This is achieved 
by ensuring that the values of the coefficients A(s), B(s), C(s) and D(s) at the grid 
point closest to the plasma surface are such that their transition from vacuum to 
plasma is continuous as a function of time. 

Furthermore, the high order derivatives requires should be calculated accurately. A 
Chebyshev least square [20,25] and a polynomial least square fit with a moving 
window [20] have been found to be equally acceptable. The presence of third 
derivatives of p(Y) and g(Y) still presents numerical difficulties as their represen- 
tation, particularly near the surface or magnetic axis, is affected considerably by 
discretization errors. Truncation of the Taylor series has proved a satisfactory 
procedure to handle this problem. Systematic errors which could accumulate from the 
procedure would manifest themselves in a deviation from pressure balance, and as 
will be seen any such deviation is very small and is regularly corrected. 

Finally, the quantity i3Y/Ylas may be computed by direct differentiation or by 
integration of the Grad-Shafranov equation, 

a!? 
- = -F,( Y,>, as s = 0, 

= - f i” F(s) ds, o<s<s,, (76) 
0 

- v/, 
= s log(s,,/s,> ’ 

s, <s<s,.. 

The latter is used in calculating the coefficients in Eqs. (57t(60) and the difference 
between the two serves as a convenient estimate for the error of the solution. A 
further check on the solution is obtained by computing s, both from inverse inter- 
polation of Y to ul, and by using u(s,) from Eq. (74) and the old value of s, . The two 
estimates are generally in very good agreement. 

2. Algorithm for the Transport Equations 

The one dimensional transport equations (Eqs. (65) and (66)) are of the general 
form 

with U(0, t) = W(0, t) = 0 and boundary conditions, 

(77) 

-$l,t)=O. (78) 
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On a grid consisting of N, equally spaced points vk with spacing A, Eq. (77) may be 
replaced by an implicit and space centred finite difference analogue 

W 
+ Z,2(fZ -f,“‘l)- w;+:,*(f;+‘-f;+f) 

A2 i 

+(1--o) G+,fkn+, - v-lfkn-1 
24 

+ 
w:, 1,2(f[E+ 1 -fi)- WL,Z(f:-fknL) 

A2 I2 

where Wz;“Gi = $( Wi*“+ ’ + Wi$‘,+ ’ ) and the implicitness parameter o is generally 
chosen to lie between one-half and one. 

A numerical boundary condition is applied at w = 0 (k = 1) by integrating Eq. 
(77) out the some grid point v/~, 

I :*-g(vf)&= U(Wk>t)f(Wk>t)+ WkJ)~(“k”) (80) 

and replacing the left side by a numerical quadrature. The best compromise between 
stability and accuracy [20] is obtained with a Simpson’s rule integration. The 
resulting system of equations is solved as a tridiagonal matrix equation [ 24 ]. 

To advance Y, Eq. (69) is integrated numerically, 

!?J ;+I = YI; + ;At(27r(x,E,);+’ + 27r(X&,$ - C(t”+ ‘) - c(P)) (81) 

with the right side considered as known. 

3. Predictor-Corrector Algorithm 

A predictor-corrector algortihm is applied to the schemes, Eqs. (79) and (81), with 
the coefficients Ui’ ‘, VE+’ and Wz’ ’ estimated on the prediction step by an Euler 
scheme and (x&J;+’ estimated in Eq. (81) on the prediction step using an Adams- 
Bashford scheme [24]. On the correction steps, (xE,);+’ is found from the solution 
of Eq. (56) and Ui+‘, Vi+’ and Wi+’ are computed from the most recent estimate 
of the equilibrium. Normally only one correction is required to obtain agreement to 
live decimal places. 

Stability and accuracy are checked by comparing r, and by comparing aY//as (see 
Eq. (76), this is equivalent to checking for pressure balance). The most crucial factor 
influencing numerical stability, in fact, is the choice of which of the two calculations 
of ~?!P/as is to be used in the coefficients for the equations. If direct differentiation of 
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Y(s) is used in Eqs. (57)-(60), or if integration of the Grad-Shafranov equation is 
used for the coefficients of Eqs. (65) and (66) in stepping p(v, t) and g(v, t), then 
mild instability results in the sense that the two algorithms for aY/as drift apart. The 
drift is reduced significantly by using direct differentiation of Y in Eqs. (65) and (66) 
and integration of the Grad-Shafranov equation (Eq. (76)) in Eqs. (57)-(60). The 
instability is analogous to the use of a leapfrog scheme in the numerical solution of a 
single hyperbolic equation [24]. In that case alternate mesh points are decoupled 
forming two independent computational meshes whose solutions can drift apart. In 
the present case, the two solutions to Eqs. (56) and (69) and Eqs. (65) and (66) must 
be coupled by using aY/ylas in the second pair of equations computed from the 
solution ot the first pair, and vice versa. 

4. Numerical Drift Prevention 

If a numerically computed solution fails to satisfy the equilibrium constraint 
equation (43) (as measured by comparing the two estimates of aY/Ylas) through the 
accumulation of numerical errors, the solution may be readjusted using Eq. (43). We 
perform the readjustment by resetting g according to Eq. (45) with g, taken as its 
most recent value. The function p(Y) is left as is, and I, is calculated from rs. Then 
Eq. (43) is solved for Y in the same way as the initial equilibrium is computed, with 
g, found as part of the solution. 

This method has the advantage that it is well posed in the sense that bifurcation is 
avoided and convergence is known to be rapid and, furthermore, the quantities that 
are considered to be most accurate, namely, Ysu,, rs and g,, are kept fixed. ‘u, is 
known exactly from Eq. (72), rs has an independent numerical check and g, is insen- 
sitive to the growth of numerical errors. 

Normally, corrections are made whenever, 

The frequency of corrections is quite variable, depending on 1 vAt/r,,/, ranging from 
one in ten to one in several hundred time steps. When / v ] is small, numerical diffusion 
tends to dominate and corrections must be applied more frequently. Results from a 
code constructed using the algorithms are discussed in the following two sections. 

VII. DISCUSSION AND RESULTS 

As an example of the results we consider the evolution of the equilibrium functions 
p, g, Y, x,E, and q for a hypothetical tokamak with aspect ratio x0/r,,, = 1.73, but 
arbitrarily take the equations in the cylindrical limit (Fig. 3). The curves in Fig. 3 
correspond to 0.0, 0.1, 0.2, 0.3 and 0.4 sec. Here, y = 1, vi = vi, and the resistive 
decay time p,r%/q is of the order of IO-* sec. 
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FIG. 3. 
equilibrium 
8, = 3.5 T, 

-1.0 L 
Evolution of the profiles (a) p(r), (b) g(r), (c) Y(r), (d) +,E,(r) ad (e) q(r) for an 

inirially with x0 = 1.3 m, rW = 0.75 m, R,= 1.5 m, ~“~0.3 x 10’ N/m’, g,, = 1.0. 

yx = -0.3 Wb, q = rlI = 1.26 x IO-” ohm m, I, = t.6 MA and c = 4.2 V. 
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FIG. 3-Continued. 

.?=j)f, Vvd,, (83) 
m 

then, 

% 
at’ 0, (84) 

as may be shown directy from Eq. (65) for the cylindrical case. Note also that with 
the boundary condition, Eq. (70), 

In Fig. 3a, the profile p(r) can be seen to decay keeping the area under the curves 
roughly constant. In fact, defining an average over the plasma cross section, 
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FIG. 4. The variation of (a) q(O), (b) p(O). (c) g, and (d) p with time. 

We have chosen (ag/aY)],S = 0, which, with the relation 

leads to 

a 
1 
VA 

at e, q(!P)d!P=O; (87) 

i.e., the q profile diffuses out with the flux surfaces in such a way as to keep the 
integral in Eq. (87) conserved. 

Figure 4 shows the histories of the parameters q(O), p(O), go and the plasma p for a 
number of values of the constant c (i.e., c(t)). The equations which apply in the case 
of anisotropic resistivity can be obtained for the cylindrical limit by using Eqs. (23) 
and (24) [20]. A n example of a run with anisotropic resistivity (nl = 2~) is shown in 
Fig. 5. Comparison of Fig. 5a with the corresponding graph of Fig. 3, shows that 
doubling ql noticeably enhances the rate at which the pressure decays. The effects on 
!P and g are weaker. Figure 5b is quite typical of the behaviour of the outward 
diffusion velocity u for the cylindrical case. 
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FIG. 5. Evolution of the equilibrium with anisotropic resistivity (~1 = 2~11). (a) p(r). (b) v(r), 
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FIG. 6. Evo\ution of the toroidal field function g(r) computed using two different time steps. In this 

case I, = 1.4 MA. 
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FIG. 7. The variation of y(r) as a function of time. 

The code has been validated by extensive comparisons of runs using different grid 
spacings and time steps. In each case, the comparison is found to be good. For 
example, in one comparison in which the time step was halved, the only noticeable 
deviation occurred in the evolution of the g profile (Fig. 6) and even here the 
deviation is always less than half a percent. 

In order to check the validity of the readjustment process, the effect of changing 
the frequency of the corrections was investigated by reducing cp (Eq. (82)) from 0.5 
to 0.3 % for the case c = -0.08 V. The deviation of the profiles was always less than 
half a percent, being greatest around 0.1 set and later reduced. 

Finally, Fig. 7 is a typical plot of the variation of the flux label v as the plasma 
evolves. w is almost “rigid” in the sense that it is Lagrangian to a good approx- 
imation, having insignificant fluctuation as it evolves with the plasma. When plotted 
as a function of r/rs, v remains quite motionless over the whole 0.4 sec.The computer 
time used on the Flinders University DEC-10 was approximately 15 set per time 
step. 

VIII. SUMMARY AND CONCLUSIONS 

We have discussed two aspects of the numerical problem of determining the slow 
resistive evolution of an axisymmetric toroidal plasma. The numerial problem can be 
considered intwo parts: 

(i) the solution of a two dimensional elliptic generalized differential equation at 
each time step to obtain the toroidal electric field function xE,, and 

(ii) the solution of a set of transport equations for stepping forward in time the 
equilibrium quantities Y, p and g, given xE,. 
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A novel iterative algorithm, which overcomes the non-standard boundary condition 
problem, is presented for the determination of xE,, and hence the diffusion velocity, 
for a given equilibrium. Significantly, this technique does not depend on the use of 
flux coordinates and so may be useful in describing situations where there are 
topology changes. 

A method for the solution of the second part of the problem, which is essentially 
one dimensional, is illustrated by considering the cylindrical limit. This cylindrical 
model provides a convenient test bed for the development of numerical methods 
required in fully toroidal plasma evolution. 

APPENDIX: QUASI-STATIONARY DIFFUSION 

The relationship between the model presented in this paper and the stationary and 
quasi-stationary models developed by Kruskal and Kulsrud (21 and Pfirsch and 
Schliiter 171, may be seen by taking 

ag a!P 
-----x0 
at at . (Al) 

Then, using Eqs. (lo), (5) and (6), 

v.v!P - c(t) 
2 

vo,t = pq-- = - - (27c)*V,, ($$ + 1;;; 
IVYI 1 

IVYI + (q - II,) B2 PY. W) 

Integration of Eq. (4) over a volume within a flux surface and integration of Eq. (A2) 
over that surface, yield a pair of equations for $((v . dS)/x*). Equating them and 
simplifying yields, 

gg P = -g2140(1/x2) + (W2~,,P~1 
m*rl,,(B*) 

as has been obtained previously by Pao [ 14 ] and by Rem [26 ]. Substitution into 
Eq. (A2) then yields the expression, 

vo”t(X~ 2) = - et> @ 
Zn(xB,] (B*) + ‘Ii 

il”r-“[l+zs(l-$-)I. (A4) 
B* 

In the limit of large aspect ratio, using the model field [27], 

B=B, 
e, - eo(rz(r)/2n(x~ - r*)I”) 

1 + (T/X0) cos 8 I ’ WI 

581/50/3-X 



434 TURNBULL AND STORER 

integration over a constant pressure surface and evaluation of the integrals to zeroth 
order in r/x0 reduce Eq. (A4) to 

P uout dS = (2n)*x,r Ed, F + VI 

Here, z(r) is the rotational transform, (r, 0) are cylindrical polar coordinates over the 
minor cross section of the torus, and x0 is the distance between the symmetry axis 
and the magnetic axis. Clearly, the first term in Eq. (A6) is the E x B drift resulting 
from the toroidal electric field. The second term is classical with the expected 
Pfirsch-Schluter enhancement. 
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